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SUMKRY

There is considerable interest in the subject of

efficient wing design for high speed flight, together with good

manoeuverability at transonic speed and satisfactory

near-to-the-ground performance. An important area is the

detail design of wing leading edges with or without leading

devices and variable camber, the flow may be attached or

seoarated.

In this report, slender bod" theory with exact

boundary condition is used to calculate the flow past a thin

conically cambered wing (i.e. with drooped leadin edges).

The leading edge flow separation has been modelled as a

vortex-cut arrangement.

Calculated results suggest that the leading edge camber

has a very marked effect on the local pressures near the lead-

I ing edges, and hence on the overall aerodynamic forces. In

particular, the lift-drag ratio can be enhanced by suitable

I choice of leading edge droop.

An interesting feature of the results is the indication

of multiple-valued solution for realistic cambers, i.e. when

the shoulder of the droops is very near the leadinq edqe. In

experiment this is not likely and another sepraration system

may exist near the high curvature wing section. The work in

,I
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this report therefore points to inadequacy of current design

approaches with simulation of one vortex system only.

The method of this report may also be extended to

incorporate, thin extensions of wing span, leading edge

devices, secondary vortices and variation of separation

points. Cross-section thickness may also be included. More

complex vortex sheet representation of the separation may

also be incorporated. From the point of view of aircraft

manoeuverability, wing root gaps or leading edge gaps are

of interest. Another consideration is for the asvmetrical

effects.

-I i
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LIST OF SYMBOLS

a OA in Z-plane, Fig.5.

al radius of circle in Z0 -plane, Fig.5.

A aspect ratio = 4k.

B' defined by equation (33).

C defined by equation (32).

c CB in Z-plane, Fig.5.

c c/a

CL lift coefficient.

C L linear lift coefficient.
lin

CL  non-linear lift coefficient.nlin

CD draa coefficient.

- C lift induced drag coefficient.
Di

C profile drag.
pi ""

e, f, defined by Z e el + if,

f function

g( ) defined in Appendix A.

G defined in Appendix A.

h given by h2 = 1 + (l/ 2)

H defined in Fig.4. - amount of leading edge droop

Vi 9 imaginary part

I, defined by ecuation (40)

I" JA defined in Appendix A.

J B defined in Arpendix A.1-
k cot (angle of sweep)

ki lift dependent drag factor HA CD/L 2

L L liftI1
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M,N defined in section 11.7

n defined in Fig.4.

4< real part.

R radius of circle in Z3-plane in Fig.5 (= a/sin6cos6).

r OP in Z1-plane, Fig.5.

r CP' in ZI-plane, Fig.5.

r' parameter in equation (10)

s seml-sDan

T vertical slit plane, Fig.5. r = YT + iZT

Te  vertical slit plane, Fic.5. Te = YTe + izTe.

Te  vortex position in T e-plane, Fig.5.

u,v,w perturbation velocities in x,y,z system.

V velocity at infinity.

v n velocity component normal to surface in cross-flow plane.

W complex velocity potential.

W. (j = 1,2,3,4) defined in section II.4.)
x,_y,z Cartesian coordiinates.

Z y+iz

Z v Yv + izv vortex position in Z-plane.vv

Sj yj + i zj (j = 0,1,2,3) complex planes see Ficr.5.

a angle of incidence.

a0  angle of incidence at zero lift.I0

('D  defined in equation (39)

a angle of incidence for no singularity at the leading edge.

B tan8

6 half the angle AO'B in Z2-plane, Fig.5.

F vortex strength.

£ droop angle as defined in Fig.4.

defined in section II.6. 11
I
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e angle POA in Z1-plane, Fig.5.

K lift dependent drag factor = ITACD/CL
2.

angle PO'y in Z -plane, Fig.5.

P density.

*half angle POB in Z2-plane, Fig.5.

* velocity potential.

_-_ normal component of velocity in cross-flow plane.
an

Sdefined by sinV = tanO/tan6

suffix u refers to the upper surface.

I refers to the lower surface.

superscript ' refers to variable quantity in integration.

subscript L or L.E. refers to leading edge

v refers to vortex
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I INTRODUCTION

There is considerable interest in the subject of efficient wing

design for high speed flight together with good manoeuverability at transonic

speed and satisfactory near-to-ground performance. An important area is

the detail design of wing leading edges with or without

leading edge devices and variable camber. The flow may be

attached or separated.

The designer is faced with simultaneous constraints of

efficient high-speed cruise (at low lift coefficient CL,

high Mach number M), satisfactory take-off and landing

performance (at high CL' low M) and good transonic

manoeuverability (low to high CL, M near 1). These constraints

necessarily result in performance limiting compromises. By

way of an example, we take the case of an aircraft with

highly swept-back wings (Figure la) or having a portion which

is highly swept-back (Figure lb). It has been shown that

gains in flying efficiency i.e. lift-drag ratio, can be

obtained by drooping the leading edge. The amount of droop

and its geometry, e.g. the shoulder position depends on the

operating CL. Thus for low CL values the ontimum position

of the shoulder of the droops may be near the leading edge,

whilst at higher values of CL, better results are obtained

with somewhat gentler camber shapes (Figure ic). The choice

of droop is subject tu compromises of this nature.



The extent of such limiting compromises can be reduced

by permitting the designer with greater flexibility in the

geometric configuration. One approach is the use of fixed

or variable geometry near the leading edges. Variable camber

with or without slats or other devices (Figure ld) fall into

this category.

For conventional aircraft with wings of low sweep-bi

there is a considertle amount of information available the

subject of leading edge design with or without devices (R i).

Calculation methods have been devised for treating 2-D

geometries (Figs. 2 and 3). The methods are strictly

applicable only when 3-D effects such as those due to wing-

tips or fuselage junctions, are small.

For wings of higher sweep-back, however, there seems

to be only a small amount of information available, particularly

wit' regard to leading edge devices. An idea of the order of

gains from leading edge devices can be obtained by reference

to the work of Ray and Hollingsworth (Ref.2) on F-4 Fighter

aircraft with leading edge sweep-back 51.40. They conclude

that incorporation of devices resulted in a sizable 33%

improvement on the buffet onset, L/D performance gain of 35%

at CL = .8 and improved lateral directional characteristics

throughout the test Mach number range of 0.6 to 0.94. The

Iimprovements were verified in a subsequent flight evaluation.
Goodmanson and Gratzer (Ref.3) show 24% improvement in L/D

at CL = 0.4, using droop and slats on a highly sweep-back wing.

, I 1 ,I'
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At present there are no suitable methods which take

into account the flow separation and are generally applicable.

There are, however, a few attempts to solve the 3-D wings

with separation under development. These are of panel or

collocation type. They require a great deal of computer

time and use large cores in the computer. It is not clear

whether these methods will permit adequate resolution with

panels or collocation points to deal with high curvature droops

near the leading edges, or leading edge devices, or

secondary vortices.

There have been however a numbcr of attempts (Refs. 4 to

16) to calculate the flowfields within the framework of

slender body theory. The slender body theory is applicable

in subsonic or moderately supersonic flow (i.e. the component

of flow normal to the wing leading edge is less Mach 0.6).

Refs. 4 - 7 concentrate on attached flow. In particular,

Cooke (Ref.7) deals with very general and realistic droop

configurations. The flows calculated are however for the

particular case where the leading edge singularity vanishes.

Refs. 8-12 idealise the flow separations by line vortex-cut

arrangements. Attempt has been made only to calculate the

flows for flat or circular arc camber wings. The approach

of Jobe(lO) although nominally for general carrber ignores the

zero incidence flows.

In Refs. 13-16, the leading edge separations are more

realistically modelled by vortex sheet representations. Once T

again only the uncambered wing and circular arc camber cases

have been fully considered. A more general approach by J
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Fernandez and Holla (16) does not include the camber effects

at zero incidence directly. In this report an attempt has

been made to calculate the flows around general wing camber

shapes with droop on basis of Ref.7 and idealised vortex-cut

arrangements as in Ref.8. This procedure is considered to

be an essential step before embarking on more complicated

vortex sheet representation.

It must be mentioned that the attached flow solutions

can be obtained by not including the separation effects.

The method of this report may also be extended to

incorporate, thin extensions of wina span, leading edge

devices, secondary vortices and variation of senaration

points. Cross-section thickness may also be included.

I
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II THEORETICAL FORMULATION

II1. Equation of Motion

Equation of motion to be satisfied is the well

known Laplace Equation which represents a slightly

perturbed main stream velocity V and corresponding

Mach Number M:

(1 - M 2)O x + t I +t zz = O.

where 0 is the disturbance velocity potential and

x, y, z are Cartesian co-ordinates fixed to the wing

(x-axis along the centre line of the wing Fig. 4 ).

The flow-field is restricted to highly swept wings

and the term (1 - M2)0 may be neglected. The

equation of motion then becomes Laplace's equation in

y and z dimensions

0 + 0.
yy zz

This is the governing equation of motion of slender

wing (or body) theory and applies throughout the Mach

number range.

11.2 Boundary Conditions and Flow Model

The conditions on the wing are:

(i) The wing is solid and hence the normal velocities

are zero.

Ii I
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(ii) For attached flow at the leading edge the condition

is that the flow turns around the leading edge. If

the edge is sharp the velocity is infinite.

If the flow separates at the leading edge, the

condition to be applied is that the velocity is finite at

the edge.

The conditions in the field are:

(i) The disturbances vanish at infinity.

(ii) The fluid Pressure is continuous.

A conical wing with leading edge dzooped, at incidence a to the

freestream V and with Cartesian axes xyz is shown in

Fig.l. The semi-span of the wing is S=kx and the

shoulder is distance ns from the centre, the amount of

droop is Hs.

The model approximates the vorticity in the separated

vortex sheets from the leading edge (±s(x), -Hs) by a

concentrated pair of vortices of strength r(x) above the

wing at positions ±yv(x), zv(x). The strength r(x)

varies in streamwise direction and therefore in order to

satisfy Kelvin's Law of Conservation of Circulation, feeding

vortex sheets in the form of 'cuts' of strength

at the leading edges have been assumed. The axis of

vorticity in these sheets is assumed to lie in the yz-vlane

and because slender wing conical flow is implied, the cuts

do not affect the velocity profile in cross.-flow plane.
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It is noted that the component of free stream V

in x-direction is Vcosa and in the cross-flow yz-plane,

Vsin. Both components must be considered to obtain

the velocity and pressure fields.

11.3 Camber Shape Transformations and their Properties

In order to make a satisfactory study by the slender

body theory, it is necessary to find conformal trans-

formation which transforms the camber line in the cross-

flow plane Z = y + iz into a circle or a vertical slit.

For a general shape this cannot be done in closed form

and in the present approach, the series of transformations

as used by Maskell and Cooke- Ref.7 are employed. These

are summarised as follows (see also Fig.'5):

Transformations

Z = y + iz

Z2 = Z2 - 4c 2  or Z 2 = Z2 + 4c 2  (1)3 3
Z 2 -- Z + 2iatan6 or Z3 = Z2 - 2iatan6 (2)

Z, 2 + .11Z 2 =- 4 a 2 23
Z = 2 2 Z Z2 4a2 or + a2  (3)

Z° =Z, - iatan6 or Z, = Zo + iatan6 (4)

T2 - Te +T or ZO = - +  I + 4a (5)

T T Te + 21asin6 or Te = T - 2iasin6 (6)
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These transformations leave the point at infinity

unchanged.

It must be mentioned that the camber in Z-plane

is generated on the assumption of a circular arc in the

Z3-plane.

The Transformation derivatives are given by the

following relations

dZ3  Z

dZ3
dZ2

dZ 2 = 1 -a 2

"d- 1  zi

- (7)

dZi

0

= z 2

dTe Zo a 2

dTe

d2Z dZWe shall also require BdT/rT for the evaluation

of Boundary Condition of zero force on Vortex-cut

arrangement (Section 11.6) and this is derived here.

'I:



J •-16 -

From equations (7), we have

dZ dZ dZ 2  dZo
TdZ0M 3  TZI dTe

dT2 Z dZ d Z dZ3  d2 Z dZ + d2Zo dT

- ddT dZ dZdT 3Z2  '0 dZ

1 dZ- 1 dZ 2a2  dZ1  dZ1
Z, dT Y d+ "T " dZ2 I

2a2 Z) (8)

If a point P on the circle is given by

Z a sec6e (= aie i ) and Z, = rei '

then it can be easily shown that

r2 - a2 = 2r.a.tansine ()

r = a tansin6 + ail + tan'6sin 0 (10)

and that

Y3 = 2a cose Vl + tan'Fsin7'
1

z3 = -2a tan6co8 2e.

If we write

sin$ = sin6cose (11)

then we have
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Y3 = R sin 2$

z3 = - R(1-cos20)

where

R = 2a cosec 26.

Hence

Z9 = 2R sine - i , (12)

and * is angle shown in Fig.2 and R is the radius of

the circle in the Z3-plane.

Family of Cross Section Shapes

There are simple relations between the various

parameters of the drooped wing and these are derived here.

At the leading edge of the wing A where 0 = 0

and * = 6, Z3 and Z = (+s - iHs) are related by

Z3 - 2a sec6e -i
6.

Z = (s - iHs) 2 = 4c2 + 4a2sec26e
- 2i 6.

On separating real and imaginary parts, we get

s 2 (1 -H) = 4c2 + 4a2 (i - tan 2 6) (13)

SH = 4a2tan6. (14)

At the shoulder point B where Z3 = 0 and

y = 2c = ns. (15)

From equations (13), (14) and (15) we find

1 - H2 - n2 1-tan 26
H tan

or

cot 26 = 1 - n-

cH[1
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Given n and H this determines 6 and then c/a

may be obtained from

c2  n2tan6

It is useful at this stage to collect here for

reference certain formulae which will be required later.

If ds0  is an element of the arc of the circle, then
dr -... L.d*(6

dsO = a sec6dX = {r2 + (!) } dO = r dO" (16)dO COO

For points on droops we have from equations (1) and

(12)

2 ( + i) = 8R2sinei

or

+ idz 4R2sin$
d -d : ze i'

If we let

Z e314 = el + ifl

then on the droops

dz f _ f (17)
dy el*

Now if ds is the element of arc on the droops we note that

d= s+ i~: .- A.  (18)

on the droop i
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I dZ2  . Q 1 1 2 - i 210II-1I ZilItl riIl jr'a e~

= /r' - 2azrcos28 + a /(r-a') ;' + 4ra'sinze

r2  r 2  (19)

2a sine
r cos 6

using equation (9).

In many cases we shall consider 6 so small that we

may ignore 64 compared with unity.

We then have

COS e 2 2cos2O (l 2 2 8}
IZ1 2 = 4a2{W" + Cos e + 2.ecos2e (l-2sin6COSe)

(20)

= 4a2 (a2 + cos 20){l + 62 (cos48+32cos2e-2W2cos4e)1
-V + cos'e)'

Also

-(z 2e310) = 9{e31 (4c2+4R2sin2Oe -21o 1 = 4(c2sin3+R 2 sinsfl).
(21)

si34a2{B2 (sinO-4sin3f) + s"ncO
I~aLA~we ~ sinwz 6cosM.5

4a 2 sin6 3 2cose+cos3e+S2cos1e (1-4') .(22)

The Normal Velocity on the Surface

Since the surface of the wing is conical through origin

0 its equation must be homogenous in x,y,z and may be written

Ii

I -.
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and
aZ-k f (y/kx) - X f' (y/kx)

ax x

kL- -hX .dz
kx kx dy

k (eiz + f~z)sel

using equation (17) and puttina kx =s.

Hence

ax sei {(e, + if1)(y + iz))

se,

The velocity normal to the contour in the cross-flow

plane due to the component V Cosa is on the "droops"

(ref.7), see Fig.6.

az k_ 2i
as4- = =Vscj -VCosa.-je (Z 2e

an n {l+ (IZ.)2} 11 (ie)

k V Cosa (Z2 e3  ...... (23)
sIZI

V n is zero on the flat part of the section.

In order to find the complex velocity potential we shall

need the component v n in Z paewhich is related to

Vn by the mapping ratio dZUsing equations (1), (12),

(19), (21) and (23) we find that
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n VI dZ9 IIZ fdZj iZo1
vo k V cos ( i

SIZI Z r cos 6

= 16k V a2cosa(c 2sin 3 O + R2sin'o)sin~cose.
s cos 26 IZ1 2r .... (24)

Care must be taken with signs here. We adopt the convention

that vn  represents the component ot velocity along outward

drawn normal. Therefore vn  is positive on upper surface

and negative on the lower surface of the droops. Vno is zero at

the leading edge.

11.4 The Complex Velocity Potential

The Complex Velocity potential W comprises the cross-

flow and axial flow contributions. The cross flow

contributions arise due to the freestream components V sina,

V cosa and the vortices ±r' at (-y, Z )" The axial
yv V

contribution arises due to V cosa. This can be represented

as

W - WI (V sina) + W2 (V cosO) + Ws (r) + W(x) ....... (25)

By virtue of transformation of the Z-plane to T e-plane,

W1 and W3 become

W, = -i V sina.Te (26)

W3 = - log (27)
Te+ e"
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where Te, is the position of right hand vortex in the

Te-plane.

Wk is simply written as

W4 = V cos.x. (28)

W2 arises for wings other than thin and flat and Weber (Ref.17)

and Cooke (Ref.7) show that it is best represented in

go-plane. W2 is defined as the complex velocity potential

required to produce a normal velocity vno at the surface

of the circle. It is equivalent to considering the effects

of a source of strength 2H.a 1.Vno  at the centre of the

circle together with a source distribution on the circumference

of strength 2(vno - Vno) per unit length, where Vno is

the mean velocity on the circumference given by

n o 2 w 
no -2 "j vio Vo(A" )d", (29)

For a thin wing it can be verified that Vno vanishes as expected.

Hence the complex velocity potential W2 is given by

W2 = r J 2vjo log (Z0-Z)ds-

- f* w v , (A ) log (Zo-Z) dA (30) ]

where Zo' is a point on the contour but Zo is any point in the

complex plane.

.., .... * -- -s _L, _j -- ; - . ., = -
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On the surface of the circle in Zo-plane, following Weber ( 17), the

velocity potential 02 can be written as

02= (W) =- - v (A') log Iz'-ZO' dX' (31)
0

dW2
we shall also need T for calculation of velocities. It follows from
differentiation of equation (30)

dW2  a, r2w v (A') dX'

zo -Zo - Iv (Z) (32)

The reduction of integral Iv (Zo ) is dealt with in Appendix A. This

is interpreted as a Cauchy Principal Value integral and its value depends

on whether the point Zo lies on the surface of the circle or outside it,

as follows:-

Zo on circle Zo = ale

dW2  0) = at iw v ( ) - Vno ( A) a vno (A)

iX
Zo outside circle Zo = pe , p > al
dW2  = a1 r2w vn' (X') - Vn M 2a1 Vno (A)
do 0v(° oZ d o (

dW2
Alternative forms for W2 and its derivative d have been derived by

Cooke ) . He uses 0' as the integration variable instead of A'. Using

equations (16), (24) and (30), W can be written as

W2 = C B' (0') log (Zo - 2,) de' (35)
o

where

C: 16 k.V a2 cos a (36)• w~iS cos 2 6 (6

B. (00) = (c2sin3#' + R2sin 3#*) sine'cos' (37)

cos#*'z' 2 (
o On the surface of the wing W2 can be reduced to 02 and evaluated

exactly (Ref. 7 and 17) as shown in Appendix B.

dif2
The complex velocity derivative - is given by

" dW2  2w B' (e') d9' (38)dZo o o-z

Equation (20) on substitution of equations (21), (22) and (23) becomes

if (Te) = V sifl . Te n f oax(g2w ogTe+yel

with W2 given by either equation (30) or (35).
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dW
The complex velocity derivative E is given by

dZ
dW dW dTe dTe ir 1 - Te dW2  dZO 40iVsina - - f ( d -" dZ (0)
dZ dTe dZ dZ Te Te dZe

dW2

with T given by either equation (33) or (34) or (38).

11.5 The Boundary Condition of Finite Velocity at the Leading Edge

This condition is applied in the cross-flow plane at the leading edge
is dW

(Z = s - i Hs, Zo = ale- ). The complex velocity derivative - is non

singular at the leading edge. Using equation (39), we obtain
_ _dTe i_ 1_1 dTe dW2  dZo

dW = iVsina i --- . -- (41)
dZ dZ 2r Te-TeI Te+Te1  o

where

dZo  dZo  dZ1  dZ2  dZ3 = dZl dZ3
dZ Z j Z2  Z 3  TZ -E_2 dZ--

dTe _ dTe dZo

dZ dZo *dZ

At the leading edge dZl is infinite, although other derivatives of the
dZ2 dW

transformations are finite. Hence for finite J- at the leading edge, we

must have dTe L.E.
d k.E Te1Ln.E.[e-el T+ l .E

or di V. s i r -EeT t dW2 d.TajL =0 (

or

i i fa i Tel+Tel fdZo] (4,2)2wVTelnT dee+elTel 1

where
aD dW_ ]

tdZoJ .ZSL.*E.

and

,..d:. tZo2+a 2
L.E. -L.E.

CD can be obtained directly from equation (33) by numerical integration

or from the exact method outlined in Appendix C. I

.,, ... .. ... .5-: - - - i I - ' " I
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11.6 The Boundary Condition of Zero Force on the

Vortex-cut.

The condition of zero force on the vortex-cut combination

follows directly from Brown and Michael (8) and can be written

asV (VI + iWI)ZZ V (2Zv  Z

or

(vI - w) = (2Z - Z (43)

where v, + iwi is the velocity at the right-hand vortex and

is found by subtracting the velocity field of the vortex at

ZV  from the total velocity and taking the limit as Z -Zv*

Using equation (38), the complex velocity potential W,

at the right-hand vortex is written as

W1 = W + 211 log(Z-Z v) (44)

and by differentiating with respect to Z and taking the limit

as Z - ZV, we obtain

dZ I l w
Z V

i.e.

rW 1 - ir 1 1 dT+ ir 1.
d - -iVsin - r-Tel T ee 2H Z-Zv
IZ Z-0j e e e,

( dw2 dZt)

dW2

with -2 given by either equation (34) or (37).
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Substituting equation (35) for V sina, we have,

ir e. e! a dZO(LE)  AL 1 _i 1]T e
v-iw1= Te.T DdE - T - -T TZ-

( de2 dTel

dw dZ

Now by using L'Hospital's rule it can be shown that

dZ d2Z 1
I-ZvJ iJ ddT

T -TeZZV E 7 dZ
Te--Te

and equation (8) may be substituted here.

From equation (44), we can write the vortex strength

r as

(2Z -Z ).2i + dT .2ri -cdZ. 2i
r= 2 . SDdTe VdTA (46)

STe+Te + 1 dT

Te "Te Te+T le

where (dW2 dZo) 
(47)9 V= d-%o dZ)zZ

Z-.Z V

The complex equation (46) now gives a complex value for

the vortex strength for a given position of the vortex .

The procedure we follow is to fix the height of the vortex and

vary the spanwise position until r has zero imaginary part.

The angle of incidence then follows directly from equation (42).

This procedure is based on Reference 8. i

I ° • , , I ! ... . .I
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11.7 Pressure Distribution and Forces

Pressure Coefficient

The pressure coefficient to the same order as the linearized equation

for the potential is given for slender configurations by

Cp sin 2a - 2 -COSa - 1 (42 + 62)
VV 2 y z

where

: S (x, y, z) :Q W}.

In conical flow 0 may be written as

* = x.0x + y.0 + z.5  + p (a constant)

The differentiation with respect to x is for constant y and z, i.e. constant

Z, so that

4 /k W( j.W0
x W1-Y rdZjz z J

It follows then that

Cp sin2 - 42k - dW - afd cs
Cp (W)A 'dZj 'L1dZJ

dW ['Rd

and follow from equation (39) and (40). The constant p must

be chosen so that Cp vanishes as y, z .

On the surface of the wing the part of the complex potential

due to drooped leading edges (W2 ) presents some problem and care

must be taken in its evaluation. In Appendix B, a method for reduction

of W2 to *2 based on Refs 7 and 17 has been given.

Similarly, care must be exercised in evaluation of d-2 . The Cauchy
dZ

Principal value integral is implied and numerical integration procedure

should account for this.

I
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The lift force coefficient CL  based on the projected

area of the wing s2/k is given by combining the linear lift

expression of Ref.7 with the non-linear lift due to the

vortices (e.g. Ref.15)

-L Ilk2  4 (2) (2+2 2+tan26),sln

Cos~c a
a Stan6 ro p Y) ~ I T

- 4(A) CO-S cOs(X-62N) + 2 -
s sS6 -Vs (Tel Tel)

where M = 1 + 8;2 + 16;4 - 16 - ,

N = 2(5c2 + 8c4 - 40c 6 - 1 4F + 1 2F + 40y + 2 O

The lift and induced drag coefficients CL and CD  may also

be obtained from integration of pressures on the wing as follows

Forces

We define the coniciti winr. n;uri..e by the equation

F(x,y,z) = z - kx f (Y/kx) = 0

Unit normal vector f6 defining the surface is given by

iF +jr +kF-X y -Z

F {2 + ry2 + r2!
X y 7.

where - k f (Y/k (Y/k)

- k (7/kx) + k (Y/kx) dz/dy

ry yk f (Y/kx)--L = 1d
Y- (YkX = d/d

F =1
rz

We also define

r (F 2 + 2 + r 2).,
r x y z

, *8, ,,'- - . .**- -' : _ . . . . -
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The Force vector dF is defined by

dF = Cpd S

where d S is an elementl surfacp ire.. This is can be represented in

terms of arc length d a as
1

dS =- . x do for a .onical wing of centre line chord x.

(1. + dy2 {l + f-2)

do dy2+dz
2 = dy2 (. + d(1

The force coefficients Cx and C zo in x and z directions respectively are

then given by

C 2 Y= i dr _ 2 1 y=r Cp.dS. fx
_k

2  k y_- __kx2 y=-

ClP (i+f,2)- (-kt+y/xf°) d (Y/kx)

awl .y=S y= r

C -2 - k rli / , dS ! ';r

z' kx :).' I*?.

,,1(!' .. It )"-.r.. d (v k,

Lift coefficient CL and dr~ig coefficic'nt C follow by resolving the force

coefficientsC and C .

C L = C. cos a - Cax sin a

COD = C z sin a + C x cos a

It must be mentioned that although the above derivations are generally

applicable, in this report we finve not incl/uded viscous effects.
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III RESULTS

The type of camber lines generated by the method are

shown in Fig. 7. The angle of droop measured at the leading-

edge increases as the shoulder position moves outboard.

For each configuration, there are two particular incidences

ao and as .  a corresponds to zero lift and asa to the

attitude where the load at the leading edge vanishes. For

an uncambered wing ao and as both coincide at 00. However,

for a wing with leading edge droop, both ao and a5  will

be positive.

Strictly speaking the value of a0 depends on the method

of solution of the problem i.e. if the flow is assumed to be

separated as in present theory or if it is attached. The

difference in practioe for "realistic" configurations is

however likely to be very small. a therefore may he
o

calculated easily.

The angle aa has a special significance, it indicates

the side of the wing on which the leading edge vortex lies.

For a > as the leading edge vortex lies above the upper

surface and vice-versa.

Fig. 8 depicts the variation of sinas/k for a set of

camber lines. As might be expected, ao increases both with

increasing amount of droop and as the shoulder position approaches

the leading edge.

!1
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As mentioned in the Introduction, previous work

contains adequate reference to uncambered and circular camber

wings (zero shoulder position). The emphasis in this report

is therefore on the aerodynamic effects as the shoulder

position moves out toward the leading edge. Both attached

and separated flow solutions have been considered.

7-
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III.1 Attached Flow

In general, the Attached Flow theory applied for small

incidences only. Fig. 9 shows the effect of shoulder

position on CL at fixed incidences for two values of camber

parameter H = O.05s and O.1s. It is noted that, in general,

as incidence increases the effect due to a fixed droop decreases.

When the shoulder of the droop tends to the leading edge, there

is a gain in lift, although for mont part droop causes a

reduction in lift at a particular attitude.

In Fig. 10 pressure distributions are shown at 50

incidence (k = .25) for various shoulder positions. It is

interesting to note the oscillatory behaviour of the pressures

near the leading edge on the upper surface as the shoulder moves

outboard from .775s to .875s.

Such a behaviour is also likely to arise for some other

droop configuration at a different incidence. It also

illustrates the problem of determining CL and CD from Cp

distribution by numerical integration. A large number of

sampling points may be required near the leading edge. I

ii
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111.2 Separated Flow

Figs. 11 and 12 show a selection of results as the

shoulder position of the droop is varied. The camber

parameter values considered are H = .058, .lOs. In each

case the following relationships have been presented:

(i) vortex locus.

(ii) vo-tex height (zv + H), against a.
r

(iii) vox>.ex strength ;V against o.

(iv) CL against a

Constant CL or a lines where appropriate have been

interpolated.

For shoulder positions less than .9s, we infer:-

(i) vortex locus moves outwards both with increasing

shoulder position and camber.

(ii) For a given shoulder position, the vortices move

closer to the surface as camber increases.

(iii) For a given camber, as the shoulder moves outwards

the vortex strength decreases at a fixed incidence.

This is particularly noted at smaller incidences.

" At higher incidence the curves approach the flat

wing case.

(iv) For a given camber, as the shoulder moves outward,

the lift decreases at a particular incidence, the

tendency being more marked at lower incidenLs.
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An interesting feature of results is that for shoulder

positions very near the leading edge, the vortex height is

apparently multi-valued through a small incidence range

(e.g. for configuration with n - .95s, H = .05s and

10.00 4 a < 15.O°). Lift "incidence and vortex strength

incidence relationships also exhibit a similar tendency.

The solution therefore admits the possibility of up to three

different flow-fields. Fig.13 showsthe three types of

pressure distributions corresponding to three vortex positions -

"low", "intermediate" and "high" at a S! 11.70. The span- ]
wise variation of the velocity tangential to the upper surface

in the cross-flow plane is shown in Fig. 14. for all three

vortex positions. The curves indicate that reattachment

streamlines which enclose the separation and then split in

two ways impinge on the wing for the "low" and "intermediate"

vortex positions (vis. .98s and .85s respectively) but not

for the "high" vortex position. Flow patterns as sketched

in Fig. 15 are indicated. The flow patterns also show

general agreement with the features of pressure distributions.

For the "low" vortex position the peak suction appears outboard

of the shoulder. For the "intermediate" and "high" vortex

position the peak suctions occur near and inboard of the shoulder

position respectively.

This analysis leads to the question of what happens in

experimental flows where the results are not likely to be

multiple-valued for a given configuration and there would be a

preferred flow field. Two possible explanations may be advanced

as follows:-
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(i) The preferred flow-field would depend on the shape of the

wing plan form near the section under consideration. If the sweepback

decreases aft of the section under consideration (as in Fig. 16(a))

the tendency may be towards attached flow type of flow field

e.g. either for "low" or "intermediate" position. Conversely,

if the sweepback increases aft of the section under consideration,

then the tendency may be for "high" position flow field. (Fig.16(b))

(ii) The velocities on the wing surface for the "low" and

"intermediate" vortex positions are fairly large near the

leading edge. It is therefore not difficult to visualise the

existence of multiple vortex system as sketched in Fig. 17.

Of the above two explanations, the latter one seems very

plausible and experimental evidence indicates the presence of

a number of vortex systems. This however suggests that the

theoretical approaches generally used for design work which

simulate only one separation system are not likely to be

adequate. This criticism applied equally to conical and

non-conical or lifting surface approaches.

It must be mentioned that Levinsky and Wei (17) also

show the existence of multiple separations on slender bodies

with Strakes (Fig.18). Their model however deals with only

one separation. Additional criteria based on the development

of the boundary layer on the body will be required to fix the

strength and position of the second separation.

I

II
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Comparisons at Constant CL.

It is of interest to compare various quantities for a
given C Taking for example a value of C = 0.3, we

look at the effect of droop shoulder position keeping the

height of camber a constant at H = .05s. The results are

shown in Fig. 19 and 20 we note the following as droop

shoulder position increases:

(i) linear part if lift increases and the non--linear

part decreases.

(ii) induced drag decreases and then increases again.

(iii) incidence required at the centre line increases.

(iv) The vortices move closer towards the leading edge.

(v) Up to shoulder position of 0.85s, the peak suction

pressure on the upper surface increases and also its

position moves outwards signifying a drag reduction

acting on the drooped leading edge.

For shoulder position 0.95s, the suction peak is

much smaller and this corresponds to a slight increase

in lift induced drag.

To enable general conclusions to be drawn, this type of

analysis needs to be carried out for a number of droop

configurations.



tI
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Lift Dependent Drag Factor k,

v A CDi
The variation of lift dependent drag factor k, at various lift

coefficients for a representative series of wings with leading edge droop has

been considered.

Wings with Circular-arc Cambers n = 0

Figure 21 shows the variation of the factor k, for leading edge droop up

to 0.4s. It is noted that the factor kj reduces with increasing CL. The

discontinuities in the curves near low CL values occur near the attachment

angles of attack. The values for k, without leading edge singularity based

on Smith's( 5 ) results are shown for reference. Flow separation, therefore,

is beneficial and gives a reduction in kj.

Figure 22 shows a comparison between Barsby's(1 4 ) results with vortex

sheet separation model and the present approach. It is interesting to note

that at lower values of CL, the present approach gives lower values for k1

but for higher values it predicts higher values. The correspondence of the

two methods improves with increasing camber.

Wings with Leading Edge Droop

The variation of shoulder position f~r leading edge droop of 0.05s and

O.ls has been depicted in Figures 23 and 24. It is noted that moving the

shoulder of the camber outwards means a reduction in kj.

For a given shoulder position at 0.8s the effect of leading edge droop

has been shown in Figure 25. It is noted that increased droop is generally

beneficial, but it may lead to a limiting value for droop. Further work

can be done on this aspect to optimise. the leading edge droop geometry for

given CL.
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IV CONCLUSIONS AND RECOMMENDATIONS

In this report, slender body theory with exact boundary

condition has been used to calculate the flows past a thin

conically cambered wing (i.e. with drooped leading edges).

The flow separation has been modelled as a vortex-cut

arrangement.

Calculated results suggest that leading edge droop has

a very marked effect on the local pressures near the leading

edges and hence the overall aerodynamic forces. In

particular, the lift-drag ratio can be enhanced by suitable

choice of leading edge droop. The calculations need to be

*generalised for a set of cambers.

The results indicate a multiple valued solution for

realistic cambers i.e. when the shoulder of the droop is very

near the leading edge. In experiment, this is not likely and

another separation system may exist near the high curvature

wing-section. The work in this report therefore Doints to

inadequacy of current design approaches with simulation of one

vortex system only.

The method of this report may also be extended (see Fig.

26) to incorporate thin extensions of wing span, leading edge

devices, secondary vortices and variation of separation points,

cross-section thickness may also be included. More realistic

vortex sheet representation (Ref.13) may also be incorporated.

From the point of view of aircraft manoeuverability, wing

root gaps or leading edge gaps may also need to be studied.

Asymmetrical configurations are also of interest.

i I



39 -

APPENDIX A

Evaluation of Integral I v(Z )

From Equation (2"7) we have

2w

0 n0

f v(_A1-vn, (A) dA at f d2W

7-Z~ - +vn(A, dA*-
0 00 0 o -o

a, f n a (A-*)-vn A= ...... dA + at vng(A) . I U(Z a

It is noted that the value of I (Zo ) depends on whether Z lies on
u 0 0

the surface of the circle or outside. It can be evaluated as follows:-

'0

2w oll

0 0 0 0
0 dA"

Now Z - a et  thereform w.'nel, ' -

Iul~o)=w Zo- o 'Z " "", ~0 0

if % lies on the slirrae. (f the c.tl, then

IlZ): -(Z wi - Wj) - _,
u 0 7o

If . lics oittd,, the Circle th,,o0

( - (2w1-0) : 2]u(o 0 - 0 i"S- A
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APPENDIX B

The reduction of W2 to 02 and evaluation.

=2 C J0B' log (Z 0-ZOI)dO'

Denoting the real part of W2  by 02 we have

= C fBI log Iz0-zolde'.

In the Z0-plane if ' 2 is to be evaluated at a point

outside the circle, the integral presents no problem.

However, on the surface, special care is required to deal

with logIZO-Z~,l term.

If we denote the radius of the circle by d then we

have

02= C jB loloi -o1i ,1y+Z y01i l

from the symmetry about the zo-axis. Hence on the circle

02 11 Vo JIPl (yo-y&,)2 + (zzt2][(yo+yo,)2 + (ZO-Z&)2]de

412

- C T~B~o~ {(d2z~z)2 -yo2y1,2}B

Putting y 0 2 =d 2-Z0 2 we have
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02 = C J B'log 2diz o -zo'IdO'

on the surface of the section.

Since zo-z o' = zI-ZI' we have on the surface, taking

note of the signs of B'

02 = C B'log _ dS' (Al)fo z!-l

where Zju is value of z,' at a point specified by 8'

and z,£' is its value at the corresponding point on the

lower surface specified by -6'.

Given sin* - tanO = sin#cosO=tan6sn =snos

we have

cose = sin* sine = cosisin6
G 'G

COS6 sin~sin6
coso = 7 - sinO = GG G:

G2 = 1 - cos 2*sin 26.

and

r = a tan6sinO a/l + tanz6s9

= a/G.(l + sin6cos*)

r = a/G.(1 - sin6cos*)

rr = a
2
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we have
z r ine a cos6cosj
21 = sin6 1-cosqsinS

z lu r'sin9 0. a cos6cosVb'
1 l-cosp' siri6

z f=-r'sine'= - a cos6cos

and d6= Co CO COS* *-Zos6sin8 Ob

On substitution, the log term in equation (Al) becomes

cost, cost
logIm-zfu I lo ( -~ in 6) TliEosolsn6)

1-lcosPcsin + 1+o~ sin6

log J s-Cs~ 1+o1 cos sin6

2 now becomes

Icos*+o~ 1cslsn

= C I2JI B' 1 + I' Bn6

where

A = 'f::o dO' Co~

and

'B log1+cos sindl
B= B' s~s dO'.B 11II

0I
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If B'de' is now put in the form

B'dO = - Ttan6cos26 g(p')dI'

where

g(*') = - B'dO' 4 d
tan~cos'6*w

then 0'A 1 I cosd-cs' '

IA  tan6cos2 6 g(V') log c-+COSVPI d4'.
AI f COS +COB 1

Now gCI-*') = -g(W')

therefore

I 1 =P'tan6cos)1 gV)logcos -cos0'II d*'.

0

IB  may also be reduced in similar way

IB = tan6cos'6 f' g(I')log 1l.cos',sin6 dO'

02 is now given by

02 = C J1tancos26(JA () + JB)i

where JA(f) = gl*') logjcosP-cosjOIdp'
Ao

0

JJ g (')log flsins d*'"B =l-cos0 'sins "
B0

The value of JA(fl depends on b but JB is a constant

jfor a given wing and may be calculated by numerical integration.

t _
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Evaluation of J (j

= g(0')logjcosT-cosT'I d*'.

This evaluation of thin form of integrals has been

discussed by Weber (17) and a solution using Fourier Series is

suggested. We know that g(O) is an odd function which also

gives g(-'=O) = g(*'=T&) = g('=H) = 0 we write

N-1
= bvcosv' (N even)
V=1,3,5

I cos vV, logj[cos-cos*' ! d*,

V=0,2 O

N
IT I~ -- co s vV=1L V.

The coefficients bu are calculated from

N N cosv* (N even)

(v=1,3,5.. .N-l)

NI (N even)
(p=O,l,2. . N)

iI

tU

I -
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AI'II;NJ'IX\ C

I'ur Lqudtions (38) anld (41)

CL ~I L0 O ~ j...

At the leading edge zo cs Z0 - ZoIZ

Therefore

= r11IA +i- - e
D la-rie1 a-re i a-r'e

a-r - -t-W1dOl

Where r' is value of r' when el is replaced by -8'

we find that

C J2 BI {21is~cosdI } dO'

H i~
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Using equations (9), (10) and (11), and noting that

r' - r' = 2a tan6 sine'

r' + r' = 2a sec6 coso'
r'r' 2I

D= C 2(c2sin3V' + R 2sin3s,)cose 2ie1 6

"o i z,1 x -i

C ~ 2ies Ia 1

whereI 1J'2 (c2sin3' + R2sinso,)cose de'
0 Iz'12

Using equation (36) we obtain

aD = 32Vi cosa.e16 k.a.
s Cos6 1

Equation (35) becomes

i V sine( 2-- T +T + 32iV cosa e16 k.a. e-21S

e eI e +1

The integral I, has been evaluated in Ref.7 as

si n 4 ;.2 6 2 -c -2
2  

"sn6-
2  

+ 314
I|" +4;2 4  _2(6c -8;4 ; _ h4_ + h

where h2- 1 + _--2,
c

II
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